Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

An alternative extension of the k-means algorithm for clustering categorical data

Tytuł:
An alternative extension of the k-means algorithm for clustering categorical data
Autorzy:
San, O. M.
Huynh, V. N.
Nakamori, Y.
Powiązania:
https://bibliotekanauki.pl/articles/907406.pdf
Data publikacji:
2004
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
analiza skupień
dane kategoryczne
eksploracja danych
cluster analysis
categorical data
data mining
Źródło:
International Journal of Applied Mathematics and Computer Science; 2004, 14, 2; 241-247
1641-876X
2083-8492
Język:
angielski
Prawa:
Wszystkie prawa zastrzeżone. Swoboda użytkownika ograniczona do ustawowego zakresu dozwolonego użytku
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Most of the earlier work on clustering has mainly been focused on numerical data whose inherent geometric properties can be exploited to naturally define distance functions between data points. Recently, the problem of clustering categorical data has started drawing interest. However, the computational cost makes most of the previous algorithms unacceptable for clustering very large databases. The k-means algorithm is well known for its efficiency in this respect. At the same time, working only on numerical data prohibits them from being used for clustering categorical data. The main contribution of this paper is to show how to apply the notion of "cluster centers'' on a dataset of categorical objects and how to use this notion for formulating the clustering problem of categorical objects as a partitioning problem. Finally, a k-means-like algorithm for clustering categorical data is introduced. The clustering performance of the algorithm is demonstrated with two well-known data sets, namely, soybean disease and nursery databases.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies