Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Existence and Topological Properties of Solution Sets for Differential Inclusions with Delay

Tytuł:
Existence and Topological Properties of Solution Sets for Differential Inclusions with Delay
Autorzy:
Gomaa, Adel Mahmoud
Powiązania:
https://bibliotekanauki.pl/articles/746625.pdf
Data publikacji:
2008
Wydawca:
Polskie Towarzystwo Matematyczne
Tematy:
Differential inclusions
mutifunctions
measures of noncompactness
delay
Źródło:
Commentationes Mathematicae; 2008, 48, 1
0373-8299
Język:
angielski
Prawa:
CC BY: Creative Commons Uznanie autorstwa 3.0 Unported
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
We consider the problem \(\dot{x}(t) \in A(t)x(t) + F (t, θ_t x))\) a.e. on \([0, b]\), \(x = \kappa\) on \([-d, 0]\) in a Banach space \(E\), where \(\kappa\) belongs to the Banach space, \(C_E ([-d, 0])\), of all continuous functions from \([-d, 0]\) into \(E\). A multifunction \(F\) from \([0, b] \times C_E ([-d, 0])\) into the set, \(P_{f_c} (E)\), of all nonempty closed convex subsets of \(E\) is weakly sequentially hemi-continuous, \(θ_t x(s) = x(t + s)\) for all \(s \in [-d, 0]\) and \(\{A(t) : 0 \leq t \leq b\}\) is a family of densely defined closed linear operators generating a continuous evolution operator \(S(t, s)\). Under a generalization of the compactness assumptions, we prove an existence result and give some topological properties of our solution sets that generalizes earlier theorems by Papageorgiou, Rolewicz, Deimling, Frankowska and Cichoń.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies