Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

On distinguishing and distinguishing chromatic numbers of hypercubes

Tytuł:
On distinguishing and distinguishing chromatic numbers of hypercubes
Autorzy:
Klöckl, Werner
Powiązania:
https://bibliotekanauki.pl/articles/743050.pdf
Data publikacji:
2008
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
distinguishing number
distinguishing chromatic number
hypercube
weak Cartesian product
Źródło:
Discussiones Mathematicae Graph Theory; 2008, 28, 3; 419-429
2083-5892
Język:
angielski
Prawa:
Wszystkie prawa zastrzeżone. Swoboda użytkownika ograniczona do ustawowego zakresu dozwolonego użytku
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
The distinguishing number D(G) of a graph G is the least integer d such that G has a labeling with d colors that is not preserved by any nontrivial automorphism. The restriction to proper labelings leads to the definition of the distinguishing chromatic number $χ_D(G)$ of G.
Extending these concepts to infinite graphs we prove that $D(Q_ℵ₀) = 2$ and $χ_D(Q_ℵ₀) = 3$, where $Q_ℵ₀$ denotes the hypercube of countable dimension. We also show that $χ_D(Q₄) = 4$, thereby completing the investigation of finite hypercubes with respect to $χ_D$.
Our results extend work on finite graphs by Bogstad and Cowen on the distinguishing number and Choi, Hartke and Kaul on the distinguishing chromatic number.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies