The results of field research at 230 river sections located throughout Poland
were used to examine the possibility of predicting values of macrophyte metrics of
ecological status. Artificial intelligence methods such as artificial neural networks
were used in the modelling. The physicochemical parameters of water (alkalinity,
conductivity, nitrate and ammonium nitrogen, reactive and total phosphorus, and
biochemical oxygen demand) were used as the explanatory (modelling) variables.
The explained (modelled) parameters were the Polish MIR (Macrophyte Index for
Rivers), the British MTR (Mean Trophic Rank) and the French IBMR (River Macrophytes
Biological Index). The quality of the constructed models was assessed
using the normalized root mean square error (NRMSE) and the r–Pearson’s linear
correlation coefficient between variables modelled by the networks and calculated
on the basis of the botanical research. These analyses demonstrated that the network
modelling MIR values had the highest accuracy. The lowest prediction accuracy
was obtained for MTR and IBMR indices. The differences between particular
models are likely to result from better adjustment of the Polish method to local
rivers (particularly in terms of indicator species used).
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00