The paper presents a new scenario-based decision rule for the spare parts
quantity problem (SPQP) under uncertainty with unknown objective
probabilities. The goal of SPQP is to ensure the right number of extra parts at
the right place at the right time. In the literature, SPQP is usually regarded as
a stochastic problem since the demand for extra parts is treated as a random
variable with a known distribution. The optimal stock quantity minimizes the
expected loss resulting from buying a given number of parts before potential
failures.
The novel approach is designed for the purchase of non-repairable spare
parts for entirely new seasonal devices, where the estimation of frequencies is
complicated because there are no historical data about previous failures.
Additionally, the decision maker’s knowledge is limited due to the nature of
the problem.
The new procedure is a three-criteria method. It is based on the Hurwicz
and Bayes decision rules and supported with a forecasting stage enabling one
to set the scenario with the greatest subjective chance of occurrence. The
method takes into account the decision maker’s attitude towards risk and the
asymmetry of losses connected with particular stock quantities. We assume
that the future unit purchase cost of a service part bought after the breakdown
is also uncertain and given as an interval parameter. The approach is designed
for short life cycle machines.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00