In this paper we shall define semantically some families of propositional modal logics related to the interpretability logic \(\mathbf{IL}\). We will introduce the logics \(\mathbf{BIL}\) and \(\mathbf{BIL}^{+}\) in the propositional language with a modal operator \(\square\) and a binary operator \(\Rightarrow\) such that \(\mathbf{BIL}\subseteq\mathbf{BIL}^{+}\subseteq\mathbf{IL}\). The logic \(\mathbf{BIL}\) is generated by the relational structures \(\left<X,R,N\right>\), called basic frames, where \(\left<X,R\right>\) is a Kripke frame and \(\left<X,N\right>\) is a neighborhood frame. We will prove that the logic \(\mathbf{BIL}^{+}\) is generated by the basic frames where the binary relation \(R\) is definable by the neighborhood relation \(N\) and, therefore, the neighborhood semantics is suitable to study the logic \(\mathbf{BIL}^{+}\) and its extensions. We shall also study some axiomatic extensions of \(\mathsf{\mathbf{BIL}}\) and we will prove that these extensions are sound and complete with respect to a certain classes of basic frames. Finally, we prove that the logic \(\mathbf{BIL}^{+}\) and some of its extensions are complete respect with the class of neighborhood frames.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00