Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

An overview of classification methods from dermoscopy images in skin lesion diagnostic

Tytuł:
An overview of classification methods from dermoscopy images in skin lesion diagnostic
Przegląd metod klasyfikacji obrazów dermatoskopowych wykorzystywanych w diagnostyce zmian skórnych
Autorzy:
Michalska, Magdalena
Boyko, Oksana
Powiązania:
https://bibliotekanauki.pl/articles/407654.pdf
Data publikacji:
2020
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
dermatoscopic images
classification method
neural network
SVM
skin cancer
skin lesion
obraz dermatoskopowy
metoda klasyfikacji
sztuczna sieć neuronowa
nowotwór skóry
zmiany skórne
Źródło:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2020, 10, 2; 36-39
2083-0157
2391-6761
Język:
angielski
Prawa:
CC BY-SA: Creative Commons Uznanie autorstwa - Na tych samych warunkach 4.0
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
The article contains a review of selected classification methods of dermatoscopic images with human skin lesions, taking into account various stages of dermatological disease. The described algorithms are widely used in the diagnosis of skin lesions, such as artificial neural networks (CNN, DCNN), random forests, SVM, kNN classifier, AdaBoost MC and their modifications. The effectiveness, specificity and accuracy of classifications based on the same data sets were also compared and analyzed.

Artykuł zawiera przegląd wybranych metod klasyfikacji obrazów dermatoskopowych zmian skórnych człowieka z uwzględnieniem różnych etapów choroby dermatologicznej. Opisane algorytmy są szeroko wykorzystywane w diagnostyce zmian skórnych, takie jak sztuczne sieci neuronowe (CNN, DCNN), random forests, SVM, klasyfikator kNN, AdaBoost MC i ich modyfikacje. Porównana i przeanalizowana została również skuteczność, specyficznośc i dokładność klasyfikatów w oparciu o te same zestawy danych.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies