Chapman-Kolmogorov Equations for a Complete Set of Distinct Reliability States of an Object Równania Chapmana–Kołmogorowa dla pełnego zbioru rozróżnialnych stanów diagnostycznych obiektu
The Chapman-Kolmogorov equations indicated in the title are a pretext to demonstrate a mathematically unrecognised truth about the effect of the reliability states of elements (which are generally understood as “subjects”) on the reliability states of a complete set of the same elements, which is called an object. Of importance here are not just the reliability characteristics of individual elements, but the independencies, dependencies and interdependencies between the elements. The relations were described in the language of graph theory. The availability matrix of the language of graph theory was translated to determine the size and probabilities of distinct reliability states of the object, the derivatives of their similarities, and the transition rates adequate to those derivatives. This article continues the research work which identifies the relationship of the properties of a complete set of distinct reliability states of an object with a widely understood theory of systems. The previous papers referred, among others, to: risk, safety, structure entropy, the reliability of the results of checks, and – most of all – technical diagnostics, both in the area of its algorithms and of its optimisation. The object’s serial reliability structure was not assumed in any of those papers, recognising that it would be a serious abuse. The research results were referred to all possible structures of a three-element object. It is believed that by virtue of the block diagrams appropriate to those structures, the readers hereof are provided with a realistic opportunity to practically (and inexpensively) verify the ideas presented here.
W artykule tytułowe „równania Chapmana-Kołmogorowa” są pretekstem do ukazania nieuświadomionej matematycznie prawdy o wpływie stanów diagnostycznych elementów (szeroko pojętych podmiotów) na stany diagnostyczne całego swojego zbioru, nazywanego krótko obiektem. Istotne są tu nie tylko charakterystyki niezawodnościowe poszczególnych elementów, ale przede wszystkim występujące między tymi elementami relacje niezależności, zależności i współzależności. Do opisu tych relacji posłużono się językiem teorii grafów, którego macierz osiągalności przełożono dla potrzeb wyznaczania: liczebności i prawdopodobieństw rozróżnialnych stanów diagnostycznych obiektu, pochodnych rzeczonych prawdopodobieństw i adekwatnych tym pochodnym – intensywności przejść. Niniejszy artykuł jest kontynuacją prac wskazujących na związek właściwości pełnego zbioru rozróżnialnych stanów diagnostycznych obiektu z szeroko pojętą teorią systemów. Wcześniejsze prace odnosiły się m.in. do: ryzyka, bezpieczeństwa, entropii struktury, wiarygodności wyników sprawdzeń i – przede wszystkim – diagnostyki technicznej, tak w obszarze jej algorytmów, jak i optymalizacji. W żadnej z nich nie założono szeregowej struktury niezawodnościowej obiektu. Przykłady analiz odniesiono do wszystkich możliwych struktur konstrukcyjnych obiektu trzyelementowego. Żywi się przekonanie, że wraz z podaniem przystających do tych struktur schematów ideowych stwarza się Czytelnikowi realną możliwość praktycznej (i taniej) weryfikacji przedstawionych przemyśleń.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00