Purpose: The aim of the represented study was to model the behaviour of two-layer combined material during its manufacturing. Design/methodology/approach: The model of material layers joining by means of calender method is built in LS-DYNA software on the basis of finite element method. Using the developed model the study of stress and strain condition changes is carried out. Numerical modelling was carried out for two types of two-layer combined materials in similar conditions. First combination was of high-density polyethylene top layer and aluminium foil bottom layer. Second combination was of high-density polyethylene top layer and low- density polyethylene bottom layer. Joining materials had equal thicknesses. Findings: During formation of two-layer combined materials the primary strain always occurs at the bottom plate of the bottom layer. However, the maximum plastic strain will be represented for the layer with lower elastic modulus value. At the point of the highest loading applied to the two-layer combined material the elasticity condition is changed to the plasticity one and the yield process is registered. Practical implications: Multi-layer combined materials are some of the most advanced types of materials. The quality of the joining of the layers, the strains and the stresses arising in their manufacturing process are the main causes of low interlayer strength. It leads to easy exfoliation and destruction of the material. The results of the study may be used to improve the quality of multi-layer combined materials. Originality/value: For the first time the model was developed for the determination of strains and stresses arising during the formation of multi-layer combined materials by means of calendering method. The calculations of the stresses and strains distribution dynamics for two-layer combined materials are represented for polymer-metal and polymer-polymer layers combinations. The results of the study may be of interest to specialists in the field of multi-layer combined materials designing and manufacturing.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00