Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Przykład zastosowania modelu reagowania systemu ratowniczo-gaśniczego

Tytuł:
Przykład zastosowania modelu reagowania systemu ratowniczo-gaśniczego
Illustrative Application of a Firefighting and Rescue Response Model
Autorzy:
Prońko, J.
Kielin, J.
Wojtasiak, B.
Powiązania:
https://bibliotekanauki.pl/articles/373179.pdf
Data publikacji:
2016
Wydawca:
Centrum Naukowo-Badawcze Ochrony Przeciwpożarowej im. Józefa Tuliszkowskiego
Tematy:
modelowanie statystyczne
analiza statystyczna
eksploracja danych
statistical modelling
statistical analysis
examination of data
Źródło:
Bezpieczeństwo i Technika Pożarnicza; 2016, 41, 1; 127-138
1895-8443
Język:
polski
Prawa:
Wszystkie prawa zastrzeżone. Swoboda użytkownika ograniczona do ustawowego zakresu dozwolonego użytku
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Cel: Prezentacja wyników uzyskanych przy zastosowaniu modelu opisującego reagowanie systemu ratowniczo-gaśniczego oraz modelu przestrzennej analizy zagrożeń dla jednego z powiatów. Wprowadzenie: Model opisujący reagowanie systemu ratowniczo-gaśniczego oraz przestrzennej analizy zagrożeń został opisany w artykułach: Przestrzenna analiza zagrożeń na podstawie danych historycznych i Klasyfikacja zdarzeń na podstawie danych historycznych (BiTP Vol. 39 Issue 3, 2015) oraz Model reagowania systemu ratowniczo-gaśniczego (w aktualnym numerze kwartalnika – przyp. red.). Niniejszy artykuł zawiera natomiast obliczenia i prognozy otrzymane przy zastosowaniu powyższych modeli do oceny funkcjonowania systemu ratowniczo-gaśniczego na terenie jednego z powiatów. Ze względu na ograniczenia objętościowe ujęto w nim jedynie podstawowe wyniki. Pozwalają one jednak na ocenę przydatności zaproponowanych algorytmów postępowania. W artykule zamieszczono wyniki uzyskane z zastosowaniem standardowych metod obliczeniowych, jednakże model konstruowany był przede wszystkim pod kątem budowy systemów komputerowych wspomagających planowanie systemu ratowniczo-gaśniczego w oparciu o dane historyczne. Budowa takiego systemu i w konsekwencji jego stosowanie przyczyniłoby się, zdaniem autorów, do zwiększenia efektywności tego systemu, rozumianej jako wzrost skuteczności przy ograniczonych zasobach finansowych. Metodologia: Analiza, wnioskowanie i modelowanie statystyczne. Wnioski: Wyniki przeprowadzonych analiz wyraźnie wskazują na duże możliwości zastosowania zaproponowanego modelu do zdarzeń charakteryzujących się pewną historyczną stabilnością: pożary, kolizje i wypadki komunikacyjne, inne zagrożenia miejscowe. Natomiast w przypadku zdarzeń gwałtownych i bardzo rzadko występujących: usuwanie skutków działania sił natury oraz duże pożary i zagrożenia miejscowe, model ten jest trudny do zastosowania ze względu na skromność danych historycznych. Istotnym ograniczeniem przeprowadzonych analiz jest aproksymacja rozkładów empirycznych przyjętymi a priori rozkładami teoretycznymi. Uwzględniając jednak możliwości dzisiejszych systemów komputerowych, można zamiast tego zastosować sieci neuronowe, które na podstawie danych historycznych nauczą się znacznie dokładniej symulować rozkłady empiryczne poszczególnych zmiennych. Tym samym otrzymane wyniki będą bardziej wiarygodne i obciążone mniejszą nadmiarowością. Wyniki zaprezentowane w niniejszym artykule wyraźnie wskazują na przydatność tego modelu do planowania systemu ratowniczo – gaśniczego, nawet jeżeli nie powstanie oparta na nim aplikacja komputerowa.

Aim: To reveal outcomes obtained with aid the firefighting and rescue response model and area risk analysis for one district. Introduction: The model, describing responsiveness of the firefighting and rescue system and area analysis of hazards, were described in articles: Spatial analysis of hazards based on historical data and Classification of incidents based on historical data (BiTP Vol. 39 Issue 3, 2015) and, Rescue and firefighting response model (in the current issue of the quarterly - editorial note). This article contains calculations and forecasts derived from the use of aforementioned model, to evaluate the performance of the firefighting and rescue system across one district. Because of content volume constraints, only basic results are included. Nevertheless, these allow for an evaluation of the usefulness of proposed algorithms. The article contains results obtained by the application of standard calculation methods. However, the model was primarily intended for computerised systems, which supported firefighting and rescue planning activity, based on historical data. The authors’ view is that the construction of such systems and consequently their application, would increase the effectiveness of the system and be recognised as an effectiveness increase with limited financial outlay. Methodology: Analysis, inference and statistical modelling. Conclusions: Results from the analysis clearly indicate a high level of plausibility in the application of the proposed model to incidents, which have some historical stability, such as: fires, vehicle collisions, road traffic accidents and other local hazards. However, in the case of devastating and very rare incidents; removing the effects of natural catastrophes and large fires, and local threats, the model is difficult to apply because of modest availability of historical data. A significant limitation approximation of empirical distributions accepted by a priori of theoretical distributions. However, considering the capabilities of current computer systems, one can substitute this by neural networks, which, based on historical data, can learn to simulate empirical distributions of individual variables much more accurately. At the same time, obtained results will be more reliable and less burdened by extremes. Results presented in this article clearly demonstrate the usefulness of this model for planning associated with the firefighting and rescue system, even if a desktop application, with principles of the model, is not developed.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies