Comparison of selected classification methods in automated oak seed sorting Porównanie wybranych metod klasyfikacji w automatycznym sortowaniu nasion dębu
In this paper the results of automated, vision based classification of oak seeds viability i.e. their ability to germinate are presented. In the first stage, using a photo of the seed cross-section, a set of feature vectors were determined. Then three classification methods were examined: k-nearest neighbours (k-NNs), artificial neural networks (ANNs) and support vector machines (SVMs). Finally, a 73.1% precision was obtained for kNN and a 64 bin histogram, 78.5% for ANN and a 4 bin histogram and 78.8% for SVM with a 64 bin histogram.
W artykule zaprezentowano wyniki badań automatycznej, wizyjnej klasyfikacji nasion dębu pod względem ich żywotności, tj. zdolności do kiełkowania. W pierwszym etapie prac, na podstawie zdjęcia przekroju nasiona, wyznaczono zbiór cech, który w sposób niezależny od kształtu i rozmiaru poszczególnych obiektów pozwala na opisanie ich budowy anatomicznej. Następnie zbadano, dla wyselekcjonowanych wektorów cech, trzy metody klasyfikacji: k-najbliższych sąsiadów (k-NN), artificial neural networks (ANN) oraz maszynę wektorów nośnych (SVM). Uzyskano 73,1% precyzji rozpoznawania dla histogramu o długości 64 metodą kNN, 78,5% dla histogramu o długości 4 dla ANN i 78,8% dla histogramu o długości 64 metodą SVM.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00