Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Total 2-Rainbow Domination Numbers of Trees

Tytuł:
Total 2-Rainbow Domination Numbers of Trees
Autorzy:
Ahangar, H. Abdollahzadeh
Amjadi, J.
Chellali, M.
Nazari-Moghaddam, S.
Sheikholeslami, S.M.
Powiązania:
https://bibliotekanauki.pl/articles/32083855.pdf
Data publikacji:
2021-05-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
2-rainbow dominating function
2-rainbow domination number
total 2-rainbow dominating function
total 2-rainbow domination number
Źródło:
Discussiones Mathematicae Graph Theory; 2021, 41, 2; 345-364
2083-5892
Język:
angielski
Prawa:
CC BY-NC-ND: Creative Commons Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych 4.0
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
A 2-rainbow dominating function (2RDF) of a graph $G = (V(G), E(G))$ is a function $f$ from the vertex set $V(G)$ to the set of all subsets of the set {1, 2} such that for every vertex $v ∈ V(G)$ with $f(v) = ∅$ the condition \(\bigcup_{u∈N(v)}f(u) = \{1, 2\}\) is fulfilled, where $N(v)$ is the open neighborhood of $v$. A total 2-rainbow dominating function $f$ of a graph with no isolated vertices is a 2RDF with the additional condition that the subgraph of $G$ induced by $\{v ∈ V (G) | f(v) ≠∅\}$ has no isolated vertex. The total 2-rainbow domination number, $\gamma_{tr2}(G)$, is the minimum weight of a total 2-rainbow dominating function of $G$. In this paper, we establish some sharp upper and lower bounds on the total 2-rainbow domination number of a tree. Moreover, we show that the decision problem associated with $\gamma_{tr2}(G)$ is NP-complete for bipartite and chordal graphs.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies