Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Interakcja wodoru ze skałą zbiornikową

Tytuł:
Interakcja wodoru ze skałą zbiornikową
Interaction of hydrogen with reservoir rock
Autorzy:
Cicha-Szot, Renata
Leśniak, Grzegorz
Powiązania:
https://bibliotekanauki.pl/articles/31348148.pdf
Data publikacji:
2022
Wydawca:
Instytut Nafty i Gazu - Państwowy Instytut Badawczy
Tematy:
magazynowanie wodoru
interakcja
skała
solanka
wodór
rozpuszczanie
minerał
hydrogen storage
rock
brine
hydrogen
interaction
dissolution
mineral
Źródło:
Nafta-Gaz; 2022, 78, 8; 580-588
0867-8871
Język:
polski
Prawa:
CC BY: Creative Commons Uznanie autorstwa 4.0
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Istnieje szereg metod magazynowania wodoru, do których zaliczyć można stosowanie zbiorników napowierzchniowych, wiązanie w wodorkach metali, nanorurkach węglowych, sieciach metaloorganicznych, ciekłych organicznych nośnikach wodoru czy adsorbentach. Jednak to podziemne magazynowanie wodoru w strukturach geologicznych (PMW) wydaje się kluczowe dla rozwiązania problemu długoterminowego magazynowania dużych ilości energii oraz zwiększenia stabilności sieci energetycznej i poprawy wydajności systemów energetycznych. Kryteria wyboru struktury do magazynowania wodoru obejmują szereg czynników technicznych, ekonomicznych, ekologicznych i społecznych. Jednym z najmniej rozpoznanych obszarów badawczych dotyczących PMW jest utrata wodoru in situ wywołana reakcjami geochemicznymi, które mogą wpływać na parametry petrofizyczne oraz wytrzymałość skał uszczelniających. W artykule przeanalizowano reakcje, jakie mogą wystąpić podczas magazynowania wodoru w strukturach geologicznych. Na podstawie studium literaturowego wskazano grupy minerałów, które mogą wpływać na zmiany pojemności magazynowej oraz na czystość gazu. Należą do nich w szczególności węglany, anhydryt, ankeryt i piryt, które stanowiąc skład matrycy skalnej lub cementu, mogą znacząco wpływać na potencjał magazynowy analizowanej struktury. Podczas kontaktu z wodorem minerały te ulegają rozpuszczeniu, w wyniku czego uwalniane są m.in. jony Fe2+, Mg2+, Ca2+, SO42−, HCO3, CO32−, HS. Jony te wchodzą nie tylko w skład minerałów wtórnych, ale również na skutek dalszych reakcji z wodorem zanieczyszczają magazynowany nośnik energii domieszkami CH4, H2S i CO2, co ogranicza możliwości dalszego wykorzystania wodoru. Zwrócono również uwagę na możliwość wystąpienia rozpuszczania kwarcu, którego szybkość zależy od stężenia jonów Na+ w solance złożowej oraz pH. Ponadto pH wpływa na reaktywność wodoru i zależy w dużej mierze od temperatury i ciśnienia, które w trakcie pracy magazynu będzie podlegało częstym cyklicznym zmianom. W artykule omówiono wpływ warunków termobarycznych na analizowany proces, co powinno stanowić podstawę do szczegółowej analizy oddziaływania skała–wodór– solanka dla potencjalnej podziemnej struktury magazynowej.

There are several hydrogen storage methods, including surface tanks, metal hydrides, carbon nanotubes, organometallic networks, liquid organic hydrogen carriers, or adsorbents. However, underground hydrogen storage (UHS) appears to be crucial in solving the problem of long-term storage of large amounts of energy, increasing the power grid's stability and improving energy systems' efficiency. The criteria for selecting a hydrogen storage structure include a number of technical, economic, ecological, and social factors. One of the least recognized research areas concerning UHS is the in situ loss of hydrogen caused by geochemical reactions that may affect sealing rocks' petrophysical parameters and strength. The article presents the reactions that may occur during hydrogen storage in geological structures. Based on a literature study, groups of minerals that may affect changes in storage capacity and gas purity have been indicated. These include, in particular, carbonates, anhydrite, ankerite, and pyrite in both the rock matrix and the cement. Upon contact with hydrogen, these minerals dissolve, releasing, among others, Fe2+, Mg2+, Ca2+, SO42– , HCO3, CO32– , HS ions. These ions are not only components of secondary minerals but also, as a result of further reactions with hydrogen, pollute the stored energy carrier with admixtures of CH4, H2S and CO2, which limits the possibilities of further hydrogen use. The possibility of quartz dissolution, the rate of which depends on the concentration of Na+ ions in the reservoir brine and the pH, was also noted. Moreover, pH influences the reactivity of hydrogen and depends mainly on temperature and pressure, which will be subject to frequent cyclical changes during the operation of the storage. This review paper discusses the influence of thermobaric conditions on the analyzed process, what should be a base for detailed analysis of the rock-hydrogen-brine interaction for the potential underground storage structure.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies