The equation for nonlinear diffusion can be rearranged to a form that immediately leads to its stochastic analog. The latter contains a drift term that is absent when the diffusion coefficient is constant. The dependence of this coefficient on concentration (or temperature) is handled by generating many paths in parallel and approximating the derivative of concentration with respect to distance by the central difference. This method works for one-dimensional diffusion problems with finite or infinite boundaries and for diffusion in cylindrical or spherical shells. By mimicking the movements of molecules, the stochastic approach provides a deeper insight into the physical process. The parallel version of our algorithm is very efficient. The 99% confidence limits for the stochastic solution enclose the analytical solution so tightly that they cannot be shown graphically. This indicates that there is no systematic difference in the results for the two methods. Finally, we present a direct derivation of the stochastic method for cylindrical and spherical shells.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00