In this paper, the effect of a fractional order of time-derivatives occurring in fractional heat conduction models on the temperature distribution in a composite sphere is investigated. The research concerns heat conduction in a sphere consisting of a solid sphere and a spherical layer which are in perfect thermal contact. The solution of the problem with a classical Robin boundary condition and continuity conditions at the interface in an analytical form has been derived. The fractional heat conduction is governed by the heat conduction equation with the Caputo time-derivative, a Robin boundary condition and a heat flux continuity condition with the Riemann-Liouville derivative. The solution of the problem of non-local heat conduction by using the Laplace transform technique has been determined, and the temperature distribution in the sphere by using a method of numerical inversion of the Laplace transforms has been obtained.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00