Uogólniono klasyczne równania stanu układu Lorenza na przypadek układu niecałkowitego rzędu o tym samym niecałkowitym rzędzie pochodnej dla wszystkich zmiennych stanu. Pokazano, że układ Lorenza niecałkowitego rzędu ma niestabilne wszystkie punkty równowagi dla α > 0,9941. Na postawie badań symulacyjnych stwierdzono, że układ Lorenza niecałkowitego rzędu α =1,1 jest układem chaotycznym.
Generalization of the state equations of the classical Lorenz chaotic system to case of the system with the same fractional order of all state variables is given. It has been proved that the fractional Lorenz system has unstable all equilibrium points for α > 0,9941 . On the basis of simulations it has been shown that the fractional Lorenz system for α =1,1 is a chaotic system with the attractor similar to the classical Lorenz Attractor.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00