In this article we introduce the concept of second Φ--variation in the sense of Schramm for normed-space valued functions defined on an interval [a; b] ⊂ R. To that end we combine the notion of second variation due to de la Vallée Poussin and the concept of φ-variation in the sense of Schramm for real valued functions. In particular, when the normed space is complete we present a characterization of the functions of the introduced class by means of an integral representation. Indeed, we show that a function [formula] (where X is a reflexive Banach space) is of bounded second Φ-variation in the sense of Schramm if and only if it can be expressed as the Bochner integral of a function of (first) bounded variation in the sense of Schramm.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00