Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Bifurcation in a nonlinear steady state system

Tytuł:
Bifurcation in a nonlinear steady state system
Autorzy:
Wang, G. Q.
Cheng, S. S.
Powiązania:
https://bibliotekanauki.pl/articles/255541.pdf
Data publikacji:
2010
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
bifurcation
cellular neural network
steady state
Krasnoselsky fixed point theorem
Źródło:
Opuscula Mathematica; 2010, 30, 3; 349-360
1232-9274
2300-6919
Język:
angielski
Prawa:
CC BY: Creative Commons Uznanie autorstwa 3.0 PL
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
The steady state solutions of a nonlinear digital cellular neural network with ω neural units and a nonnegative variable parameter λ are sought. We show that λ = 1 is a critical value such that the qualitative behavior of our network changes. More specifically, when ω is odd, then for λ ∈ [0, 1), there is one positive and one negative steady state, and for λ ∈ [1, ∞), steady states cannot exist; while when ω is even, then for λ ∈ [0, 1), there is one positive and one negative steady state, and for λ = 1, there are no nontrivial steady states, and for λ ∈ (1, ∞), there are two fully oscillatory steady states. Furthermore, the number of existing nontrivial solutions cannot be improved. It is hoped that our results are of interest to digital neural network designers.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies