Let p be a positive integer and G = (V (G), E(G)) a graph. A p-dominating set of G is a subset S of V (G) such that every vertex not in S is dominated by at least p vertices in S. The p-domination number ϒp(G) is the minimum cardinality among the p-dominating sets of G. Let T be a tree with order n ≥ 2 and p ≥ 2 a positive integer. A vertex of V (T) is a p-leaf if it has degree at most p - 1, while a p-support vertex is a vertex of degree at least p adjacent to a p-leaf. In this note, we show that ϒp(T) ≥ (n + /Lp(T)/ - /Sp(T)/)/2, where Lp(T) and Sp(T) are the sets of p-leaves and p-support vertices of T, respectively. Moreover, we characterize all trees attaining this lower bound.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00