This paper presents an algorithm of multisensor decentralized data fusion for radar tracking of maritime targets. The fusion is performed in the space of Kalman Filter and is done by finding weighted average of single state estimates provided be each of the sensors. The sensors use numerical or neural filters for tracking. The article presents two tracking methods - Kalman Filter and General Regression Neural Network, together with the fusion algorithm. The structural and measurement models of moving target are determined. Two approaches for data fusion are stated - centralized and decentralized - and the latter is thoroughly examined. Further, the discussion on main fusing process problems in complex radar systems is presented. This includes coordinates transformation, track association and measurements synchronization. The results of numerical experiment simulating tracking and fusion process are highlighted. The article is ended with a summary of the issues pointed out during the research.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00