Two low-cost methods of estimating the road surface condition are presented in the paper, the first one
based on the use of accelerometers and the other on the analysis of images acquired from cameras installed
in a vehicle. In the first method, miniature positioning and accelerometer sensors are used for evaluation of
the road surface roughness. The device designed for installation in vehicles is composed of a GPS receiver
and a multi-axis accelerometer. The measurement data were collected from recorded ride sessions taken
place on diversified road surface roughness conditions and at varied vehicle speeds on each of examined
road sections. The data were gathered for various vehicle body types and afterwards successful attempts
were made in constructing the road surface classification employing the created algorithm. In turn, in the
video method, a set of algorithms processing images from a depth camera and RGB cameras were created.
A representative sample of the material to be analysed was obtained and a neural network model for classification of road defects was trained. The research has shown high effectiveness of applying the digital image
processing to rejection of images of undamaged surface, exceeding 80%. Average effectiveness of identification of road defects amounted to 70%. The paper presents the methods of collecting and processing the
data related to surface damage as well as the results of analyses and conclusions.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00