Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Passenger’s routes planning in stochastic common-lines’ multi-modal transportation network through integrating Genetic Algorithm and Monte Carlo simulation

Tytuł:
Passenger’s routes planning in stochastic common-lines’ multi-modal transportation network through integrating Genetic Algorithm and Monte Carlo simulation
Autorzy:
Peng, Yong
Mo, Zhiyao
Liu, Song
Powiązania:
https://bibliotekanauki.pl/articles/1955092.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
stochastic networks
multimodal transportation
passengers’ route
genetic algorithm
Monte Carlo simulation
sieci stochastyczne
transport multimodalny
algorytm genetyczny
symulacja Monte Carlo
Źródło:
Archives of Transport; 2021, 59, 3; 73-92
0866-9546
2300-8830
Język:
angielski
Prawa:
CC BY: Creative Commons Uznanie autorstwa 4.0
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
In the urban transportation network, most passengers choose public transportation to travel. However, bad weather, accidents, traffic jams and other factors lead to uncertainty in transportation network. Besides, transport vehicles running on the same segments of routes and belonging to different modes or routes make the transportation network more complicated. In order to improve the efficiency of passenger’s travel, this paper aim to introducing an approach for optimizing passenger travel routes. This approach takes the travel cost and the number of transfers as constraints to finding the shortest total travel duration of passenger in urban transportation network. The running duration and dwell duration of the vehicles in the network are uncertain, and the vehicles are running according to the timetables. As transportation modes, bus, rail transit and walk are considered. In terms of methodological contribution, this paper combines Genetic Algorithm (GA) and Monte Carlo simulation to deal with optimization problem under stochastic conditions. This paper uses Monte Carlo simulation to simulate the running duration and dwell time of vehicles in different scenarios to deal with the uncertainty of the network. The shortest path of passenger’s travel is solved by GA. Two kinds of population management strategies including single population management strategy and multiple population management strategy are designed to guide the solution population evolving process. The two kinds of population management strategies of GA are tested in numerical example. The satisfactory convergence performance and efficiency of the model and algorithm is verified by the numerical example. The numerical example also demonstrated that the multiple population management strategy of GA can get better results in a shorter CPU time. At the same time, the influences of some significant variables on solution are performed. This paper is able to provide a scientific quantitative support to the path scheme selection under the influence of common-lines and timetables of different modes of transportation in stochastic urban multimodal transportation network.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies