The method of boundary curve reparametrization is generalized to the case of multiply connected domains. We construct the approximate analytical conformal mapping of the unit disk with m circular slits and n-m radial slits and an annulus with (m-1) circular slits and n-m radial slits onto an arbitrary given (n+1) multiply connected finite domain with a smooth boundary. The method is based on extension of the Lichtenstein-Gershgorin equation to a multiply connected domain. The proposed method is reduced to the solution of a linear system with unknown Fourier coefficients. The approximate mapping function has the form of a Cauchy integral. Numerical examples demonstrate that the proposed method is effective in computations.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00