Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Rough Set Application for the Tax Payer Classification Rules

Tytuł:
Rough Set Application for the Tax Payer Classification Rules
Zastosowanie teorii zbiorów przybliżonych w zadaniu klasyfikacji podatników
Autorzy:
Misztal, L.
Powiązania:
https://bibliotekanauki.pl/articles/156046.pdf
Data publikacji:
2009
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
zbiory przybliżone
eksploracja danych
klasyfikacja
ekstrakcja reguł
reguły decyzyjne
rough sets
data mining
classification
rules extraction
decision rules
Źródło:
Pomiary Automatyka Kontrola; 2009, R. 55, nr 10, 10; 796-798
0032-4140
Język:
angielski
Prawa:
CC BY: Creative Commons Uznanie autorstwa 3.0 Unported
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Classification of the tasks for real-world problems becomes possible because of creation and use of more efficient IT systems. It also targets rough set methods as well described with solid mathematical basis for classification tasks. In the presented paper the application of rough set theory with the usage of significance of attributes and decision rule sets for classification of taxpayers is described. There are taken into account the negative or positive results of taxation control, and specific features describing payers are considered. Appropriate choice of data, building the model and its application leads to the specified goal reaching, with better accuracy in comparison to "intuitive" choice. Simultaneously it becomes possible to extract decision rules in the linguistic form, what gives opportunity for easier interpretation of obtained results. As a result of the solution application the more accurate selection of tax payers is obtained. This is of significant meaning for the tax authorities, and this leads for the better observance of the tax law.

Rozwiązywanie zadań klasyfikacji dla rzeczywistych problemów stało się możliwe dzięki rozwojowi wydajniejszych systemów informatycznych. Dotyczy to również teorii zbiorów przybliżonych dla zadań klasyfikacji. W przedstawionej publikacji zastosowano zbiory przybliżone, które mają ugruntowaną teorię bazującą na rozszerzeniu teorii zbiorów i definiującą dolne oraz górne przybliżenie, oraz wyznaczającą tabelę decyzyjną do klasyfikacji. Metodę użyto do obliczeń istotności atrybutów oraz reguł decyzyjnych opisujących klasyfikację podatników ze względu na pozytywny lub negatywny wynik kontroli, przy uwzględnieniu specyficznych cech ich opisujących. Odpowiedni dobór danych, budowa modelu oraz jego użycie umożliwiło osiągnięcia zadanego celu ze zwiększoną dokładnością w stosunku do "intuicyjnego" wyboru. Wykorzystanie zbiorów przybliżonych, które wyznaczają wyniki końcowe klasyfikacji w postaci zbioru reguł umożliwiło ich ekstrakcję w łatwo interpretowalnej formie lingwistycznej. W publikacji zastosowano autorskie rozwiązanie programowe bazujące na kolekcjach, tablicach oraz obiektach pośrednich, zaimplementowane dla bazy danych Oracle, dzięki któremu zrealizowano zadanie oraz przedstawiono rezultaty. Dzięki uzyskanym wynikom bazującym na modelu opartym na użytej metodzie możliwe staje się dokładniejsze typowanie podatników funkcjonujących w polskim systemie prawnym i mających problemy podatkowe, których należy poddać kontroli. Tym samym zwiększa się skuteczność egzekwowania prawa podatkowego.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies