Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Clothing Image Classification with a Dragonfly Algorithm Optimised Online Sequential Extreme Learning Machine

Tytuł:
Clothing Image Classification with a Dragonfly Algorithm Optimised Online Sequential Extreme Learning Machine
Klasyfikacja obrazu odzieży za pomocą zoptymalizowanego algorytmu Dragonfly sekwencyjnej maszyny uczącej się
Autorzy:
Li, Jianqiang
Shi, Weimin
Yang, Donghe
Powiązania:
https://bibliotekanauki.pl/articles/1419412.pdf
Data publikacji:
2021
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Biopolimerów i Włókien Chemicznych
Tematy:
Dragonfly algorithm
Online Sequential Extreme Learning Machine
clothing image classification
optimised parameter
algorytm Dragonfly
OSELM
maszyna ucząca się
klasyfikacja obrazu odzieży
parametr zoptymalizowany
Źródło:
Fibres & Textiles in Eastern Europe; 2021, 3 (147); 91-96
1230-3666
2300-7354
Język:
angielski
Prawa:
Wszystkie prawa zastrzeżone. Swoboda użytkownika ograniczona do ustawowego zakresu dozwolonego użytku
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
This study proposes a solution for the issue of the low classification accuracy of clothing images. Using Fashion-MNIST as the clothing image dataset, we propose a clothing image classification technology based on an online sequential extreme learning machine (OSELM) optimised by the dragonfly algorithm (DA). First, we transform the Fashion-MNIST dataset into a data set that we extract from the corresponding grey image. Then, considering that the input weight and hidden layer bias of an OSELM are generated randomly, a DA is proposed to optimise the input weight and hidden layer bias of the OSELM to reduce the influence of random generation on the classification results. Finally, the optimised OSELM is applied to the clothing image classification. Compared to the other seven types of classification algorithms, the proposed clothing image classification model with the DA-optimised OSELM reached 93.98% accuracy when it contained 350 hidden nodes. Its performance was superior to other algorithms that were configured with the same number of hidden nodes. From a stability analysis of the box-plot, it was found that there were no outliers exhibited by the DA-OSELM model, whereas some other models had outliers or had lower stability compared to the model proposed, thereby validating the efficacy of the solution proposed.

W pracy zaproponowano rozwiązanie problemu niskiej dokładności klasyfikacyjnej obrazów odzieży. Wykorzystując Fashion-MNIST jako zbiór danych obrazu odzieży, zaproponowano technologię klasyfikacji obrazów odzieży w oparciu o sekwencyjną maszynę uczącą się (OSELM) zoptymalizowaną przez algorytm Dragonfly (DA). Najpierw przekształcono zbiór danych Fashion-MNIST w zestaw danych, który wyodrębniono z obrazu. Następnie, biorąc pod uwagę, że waga wejściowa i odchylenie warstwy ukrytej OSELM były generowane losowo, w celu zmniejszenia wpływu generowania losowego na wyniki klasyfikacji zaproponowano DA w celu optymalizacji wagi wejściowej i obciążenia warstwy ukrytej OSELM. Następnie, zoptymalizowany OSELM zastosowano do klasyfikacji obrazu odzieży. W porównaniu z pozostałymi siedmioma typami algorytmów klasyfikacji, proponowany model klasyfikacji obrazu odzieży ze zoptymalizowanym przez DA OSELM osiągnął dokładność 93,98%. Jego wydajność przewyższyła inne algorytmy. Na podstawie analizy stabilności wykresu stwierdzono, że nie było wartości odstających wykazywanych przez model DA-OSELM, podczas gdy niektóre inne modele miały wartości odstające lub miały niższą stabilność w porównaniu z proponowanym modelem, potwierdzono w ten sposób skuteczność proponowanego rozwiązania.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies