Przedstawione prace badawcze dotyczyły oceny skuteczności stosowania opisu multifraktalnego jako narzędzia do wydobywania informacji z bardzo wysokorozdzielczych zobrazowań satelitarnych, prezentujących głównie obszary Polski. Przeanalizowano duże zestawy danych panchromatycznych, zarejestrowanych przez satelity WorldView-2 i EROS-A. Wyniki analiz potwierdziły wyższość multifraktali jako globalnych charakterystyk zobrazowań nad standardowym opisem fraktalnym, a także użyteczność stosowania parametrów multifraktalnych jako charakterystyk w klasyfikacji zdjęć satelitarnych przy użyciu klasyfikacyjnych drzew decyzyjnych. Porównano również cechy multifraktalne z szeroko stosowanymi parametrami teksturalnymi w kontekście skuteczności klasyfikacji zdjęć satelitarnych i przeanalizowano wpływ filtracji na wyznaczane charakterystyki multifraktalne, w szczególności w kontekście poprawy skuteczności klasyfikacji. Przeprowadzono również wstępne badania dotyczące możliwości wykorzystania fraktali w analizach lotniczych danych hiperspektralnych. Przeprowadzone analizy wykazały użyteczność multifraktali w wielu obszarach badań teledetekcyjnych, a wypracowana metodologia może być z powodzeniem dalej rozwijana i stosowana do bardziej ukierunkowanych zadań, takich jak analiza zmian lub ocena przydatności kanałów spektralnych.
Research presented in this paper is focused on the efficiency assessment of multifractal description as a tool for Image Information Mining. Large datasets of very high spatial resolution satellite images (WorldView-2 and EROS-A) have been analysed. The results have confirmed the superiority of multifractals as global image descriptors in comparison to monofractals. Moreover, their usefulness in image classification by using decision trees classifiers was confirmed, also in comparison with textural features. Filtration process preceding fractal and multifractal features estimations was also proved to improve classification results. Additionally, airborne hyperspectral data have been initially analysed. Fractal dimension shows high potential for the description of hyperspectral data. To summarise all conducted tests indicate the usefulness of multifractal formalism in various aspects of remote sensing. Prepared methodology can be further developed and used for more specific tasks, for example in change detection or in the description of hyperspectal data complexity.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00