We show that the restriction operator of the space of holomorphic functions on a complex Lie group to an analytic subset V has a continuous linear right inverse if it is surjective and if V is a finite branched cover over a connected closed subgroup Γ of G. Moreover, we show that if Γ and G are complex Lie groups and V ⊂ Γ × G is an analytic set such that the canonical projection $π_1 : V → Γ$ is finite and proper, then $R_V : O(Γ × G) → Im R_V ⊂ O(V)$ has a right inverse
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00