The linear homogeneous differential equation with variable delays
$ ẏ(t) = ∑_{j=1}^n α_j(t)[y(t) - y(t-τ_j(t))]$
is considered, where $α_j ∈ C(I,ℝ͞͞⁺)$, I = [t₀,∞), ℝ⁺ = (0,∞), $∑_{j=1}^n α _j(t) > 0$ on I, $τ_j ∈ C(I,ℝ⁺),$ the functions $t - τ_j(t)$, j=1,...,n, are increasing and the delays $τ_j$ are bounded. A criterion and some sufficient conditions for convergence of all solutions of this equation are proved. The related problem of nonconvergence is also discussed. Some comparisons to known results are given.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00