Tytuł pozycji:
When are Borel functions Baire functions?
- Tytuł:
-
When are Borel functions Baire functions?
- Autorzy:
-
Fosgerau, M.
- Powiązania:
-
https://bibliotekanauki.pl/articles/1208590.pdf
- Data publikacji:
-
1993
- Wydawca:
-
Polska Akademia Nauk. Instytut Matematyczny PAN
- Źródło:
-
Fundamenta Mathematicae; 1993, 143, 2; 137-152
0016-2736
- Język:
-
angielski
- Prawa:
-
Wszystkie prawa zastrzeżone. Swoboda użytkownika ograniczona do ustawowego zakresu dozwolonego użytku
- Dostawca treści:
-
Biblioteka Nauki
-
Przejdź do źródła  Link otwiera się w nowym oknie
The following two theorems give the flavour of what will be proved. Theorem. Let Y be a complete metric space. Then the families of first Baire class functions and of first Borel class functions from [0,1] to Y coincide if and only if Y is connected and locally connected.} Theorem. Let Y be a separable metric space. Then the families of second Baire class functions and of second Borel class functions from [0,1] to Y coincide if and only if for all finite sequences $U_1,...,U_q$ of nonempty open subsets of Y there exists a continuous function ϕ:[0,1] → Y such that $ ϕ^{-1}(U_i) ≠Ø$ for all i ≤ q.