Tytuł pozycji:
Homology lens spaces and Dehn surgery on homology spheres
- Tytuł:
-
Homology lens spaces and Dehn surgery on homology spheres
- Autorzy:
-
Guilbault, Craig
- Powiązania:
-
https://bibliotekanauki.pl/articles/1208523.pdf
- Data publikacji:
-
1994
- Wydawca:
-
Polska Akademia Nauk. Instytut Matematyczny PAN
- Źródło:
-
Fundamenta Mathematicae; 1994, 144, 3; 287-292
0016-2736
- Język:
-
angielski
- Prawa:
-
Wszystkie prawa zastrzeżone. Swoboda użytkownika ograniczona do ustawowego zakresu dozwolonego użytku
- Dostawca treści:
-
Biblioteka Nauki
-
Przejdź do źródła  Link otwiera się w nowym oknie
A homology lens space is a closed 3-manifold with ℤ-homology groups isomorphic to those of a lens space. A useful theorem found in [Fu] states that a homology lens space $M^3$ may be obtained by an (n/1)-Dehn surgery on a homology 3-sphere if and only if the linking form of $M^3$ is equivalent to (1/n). In this note we generalize this result to cover all homology lens spaces, and in the process offer an alternative proof based on classical 3-manifold techniques.