Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

On a discrete version of the antipodal theorem

Tytuł:
On a discrete version of the antipodal theorem
Autorzy:
Oleszkiewicz, Krzysztof
Powiązania:
https://bibliotekanauki.pl/articles/1205472.pdf
Data publikacji:
1996
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Źródło:
Fundamenta Mathematicae; 1996, 151, 2; 189-194
0016-2736
Język:
angielski
Prawa:
Wszystkie prawa zastrzeżone. Swoboda użytkownika ograniczona do ustawowego zakresu dozwolonego użytku
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
The classical theorem of Borsuk and Ulam [2] says that for any continuous mapping $f: S^k → ℝ^k$ there exists a point $x ∈ S^k$ such that f(-x) = f(x). In this note a discrete version of the antipodal theorem is proved in which $S^k$ is replaced by the set of vertices of a high-dimensional cube equipped with Hamming's metric. In place of equality we obtain some optimal estimates of $inf_x ||f(x)-f(-x)||$ which were previously known (as far as the author knows) only for f linear (cf. [1]).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies